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Abstract. Natural images can fundamentally affect the evolution and development of 
biological visual systems. Therefore much research has been done on the statistics of 
natural images. One of the most striking findings is that the orientation averaged power 
spectrum of natural images follows the universal power law. However little is known the 
origin of the universal power law. In this paper, the power spectra of natural images were 
explored under different transforms. We found that the power spectrum was unaffected 
under histogram equalization transform and a shape transform. However, with a little 
surprise, it found that the power spectra were affected more by local micro structure than 
global configure structures. Then a three dimensional and a two dimensional simulations 
were carried out. The results of the simulations indicated that the universal power law may 
due to the projection of three dimensional objects with sizes equally distributed. However, 
the size distribution of two dimensional objects waits further research. 

1. Introduction 

Natural images can fundamentally affect the evolution and development of biological visual 
systems. Therefore much research has been done on the statistics of natural images. One of the most 
striking findings is that the orientation averaged power spectrum S of natural images follows the 
universal power law [3,4,8,10] 
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where r is the spatial frequency, and A is a constant. η is the deviation of the universal power law. 

This universal power law is generally regarded as a key feature of natural images. Much vision 
research [1,2,6,7,12] is based on this result. However, one may wonder what the origin of natural 
images is. Where does it come from? Some researcher [9] tried to explain the origin of the universal 
power law as the collage region of independent objects which obeyed power law. Clearly, in this 
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case, the researcher only consider the two dimensional situation while we live in a three 
dimensional world.   

In this paper, the power spectra of natural images were explored under different transforms. 
Then two simulation studies on the origin of the universal power law are presented. In the first 
simulation, three dimensional objects located uniformly in three dimensional space was studied, it is 
found that under uniform distribution, the simulated images conform to the universal power law. In 
the second simulation, different power law of the sizes of the objects are simulated, it found that the 
simulated images conform to the universal power law with different deviation.  

In the next section, the power spectra of natural images are examined with different transform 
applied. Then the 3D simulation is presented. This is followed by the 2D simulation with different 
power law of the sizes of the objects. Then a discussion of these simulations is presented. The paper 
is concluded by a summary. 

2. The Natural Images and different Transforms 

Around one hundred natural images were collected from the internet. A sample of these images 
was presented in Figure 1. The orientation averaged mean power spectrum of these images was 
calculated and found to conform to the universal power law with the deviation -0.32. The power 
spectrum is presented in Figure 2 

 

                                               Figure 1: A sample of natural images 
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Figure 2: (Left) The orientation averaged power spectrum of the natural images with deviation -
0.32 . (Right) The orientation averaged power spectrum of the histogram equalization 

transformed natural images with deviation -0.25. 
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One may wonder how the power spectrum changes under different transforms. Here a series of 
transforms were applied to these natural images. First we applied the histogram equalization to 
these natural images. The histogram equalization made images to have more contrast while keep the 
pixel position unchanged. It turned out that orientation averaged power spectrum still conform to 
the universal power law with the deviation -0.25 (see Figure 2 right). 

The next transform applied to these natural images was distortion transform. The distortion 
transform enlarges or squeezes the images in the horizontal or vertical directions. Two distortion 
transformed examples are shown in Figure 3. 

 

 
                              Original     Distorted 

                  Figure 3: A sample of original and distorted images 

After examine the distortion transformed images, it found that the images still look like natural 
images. Indeed the orientation averaged power spectrum still conform to the universal power law 
with the deviation -0.39 (see Figure 4) although the images changed a lot .  
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Figure 4: The orientation averaged power spectrum of the distortion transformed natural images 
with deviation -0.39. 

After examining these two transforms, one may wonder how local and global structures affect 
the power spectra of the natural images. Here the local micro structures were first kept while the 
global configure structures were randomized. More concretely, the images were first divided to 
small squares, the microstructure of small squares were kept while their positions were randomized. 
Figure 5 is two examples of the transformed images.    
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                Original                    Configure randomized 

                                   Figure 5: A sample of randomized images 

The corresponding power spectra are presented in Figure 6. 
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Figure 6: The orientation averaged power spectrum of the configure randomized natural images 
with deviation -0.37 for 6464 case while for 88 the power spectrum was zig-zag. 
 
It can be observed that for 88 configure randomized images, the orientation averaged power 

spectrum did not conform to the universal power law. Instead there was zig-zag on the power 
spectrum. In fact, the zig-zag appeared on power spectra of 1616, 3232 configure randomized 
images. However, the zig-zag disappeared for the power spectrum of the 6464 configure 
randomized images while 6464 is consistent with observation that 6464 was the smallest 
patches for observable images [11]. 

144



 

The configure randomized transform was a global transform, one may wonder if one kept the 
global structure while changing the local micro structure, what the power spectra look like? In the 
following exploration, this kind of local transform were applied. One transformed example is shown 
in the Figure 7. The corresponding orientation averaged power spectrum was presented in Figure 8. 

 

 
                  22 

 
                       88 

                    Original                              Local randomized 

Figure 7: A sample of original and local randomized images. 
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                22                                                                        88 

Figure 8: The orientation averaged power spectrum of the local randomized natural images. 
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One may be surprised that the local randomized images were just a little blurred while the 
orientation averaged power spectrum became non-universal power law. In fact, for the 22 case, 
only the very high frequency part did not conform to the universal power law while the other part of 
the curve still look like a straight line in the loglog coordinates.  

3. The Three Dimensional Simulations 

Natural images are images of three dimensional space objects such as trees, flowers, rocks, 
mountains, animals, etc. Research on the origin of the universal power law [9] which primarily 
worked in the two dimensional space is obviously not feasible in general. So the origin of the 
universal power law of natural images that it uncovered is not very convincing. Here we worked 
directly in three dimensional space. It is assumed that objects in the three dimensional space are 
opaque spheres of different sizes. Using spheres to represent objects can simplify the simulation a 
lot since all spheres are imaged as circle disks with different sizes. 

Assume there was an idealized pinhole camera (see Figure 9 for the camera setup). The camera 
can be of different configuration with different image sizes and different distance from the pinhole 
to the images (focal length). Moreover, to be more realistic, the spheres are assumed to be in certain 
distance from the camera, the distance is not too near or too far away.   

pinhole camera

images

3D space

 

Figure 9: The pinhole camera setup 

Then certain amount of the spheres was assumed in the three dimensional space, e.g. assume 
20,000 spheres in the three dimensional space. Each sphere could be a random size, located in a 
random location in this three dimensional space, with different shades (here we only consider the 
lightness of the images, therefore only shades were considered). To be most generally, the sizes of 
these spheres were assumed to be uniformly distributed since one has no reason to assume one 
object size was more likely happen than the other object size. These spheres were then rendered by 
Computer Graphics algorithm [5].  

The objects were first sorted according to the Z dimension (which was the distances from the 
pinhole camera). Then the objects were rendered from far to near with the near objects occluded the 
far objects. To avoid the intersection detections which were very difficult, it is assumed that the 
spheres were represented by different circular disks with infinitesimal thickness when sphere 
intersection detections were needed. Several of the rendered images were shown in Figure 10. 
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A series of simulations were conducted. For different simulations, camera setups were modified, 
e.g. the focal length was increased/decreased, the objects was moved far/near to the camera, etc. In 
every simulation, around one hundred simulated images were generated and the orientation-
averaged power spectrum was computed. It was found that the power spectra conform to the 
universal power law with deviation -0.14, -0.30, -0.57, -0.67 (Figure 11). 

 

 

Figure 10: A sample of rendered images of three dimensional space. 

The object sizes were assumed to equally distributed in the three dimensional space. However, 
the sizes of the imaged objects in two dimensional space were more like to be not equally 
distributed. Big object located far away were imaged as small ones in the two dimensional images 
while small object located nearby were imaged as big ones in two dimensional images. The reason 
for this is because the images of three dimensional objects also depend on the third dimensional 
distance z.  
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Figure 11: The orientation-averaged power spectrum of the rendered images in log-log plot with 
different deviation for different camera setups. 
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The distributions can be calculated in the simulation. One result is presented in Figure 12. In the 
Figure 12, the horizontal line represented the sizes of the objects in the two dimensional space while 
the vertical line represented the number of the objects. The numbers of the objects seem follow the 
1/size3 for small size object while follow 1/size for large size object. Some Research [9] suggested 
the two dimensional objects follow the power law. One may wonder how the power spectra for 
different two dimensional object distributions are. This leaded to the next simulation. 
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Figure 12: The histogram of the object sizes versus object numbers. 

4. The Three Dimensional Simulations 

In the two dimensional simulation, the sizes of objects in two dimensional space were assumed to 
be different power law. It should be noted that in this two dimensional space, there is no the third 
dimension distance z while the sizes of the objects were assumed to follow 
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where s is the size of the objects. Here the γ were assumed to be 3, 2, 1, 0. The simulated images 
for differentγ were presented in Figure 13. 

 

 
            γ=0                             γ=1                                γ=2                              γ=3 

                        Figure 13: A sample of simulated 2D images. 
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Around one hundred simulated images are calculated to generate the averaged power spectra for 

different γ=3, 2, 1, 0$. The deviation forγ=3, 2, 1, 0 are 0.22, -0.17, -0.47, -0.59. One of the power 

spectra is shown as Figure 14. 

One interesting result is that forγ=0, the power law became to be equally distributed for object 

sizes in the two dimensional space. Still the power spectrum conforms to universal power law. It 
worth noting that this size distribution is without the third dimension distance Z.   

It is a little surprised the power spectra of simulated two dimensional images all conformed to 
universal power law with different deviation. This seems indicate that the universal power law were 
very robust. It may also indicate that some distribution may not be applied by the natural images 
although their power spectra conform to the universal power law.   
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Figure 14: The orientation-averaged power spectrum of the simulated 2D images in log-log plot. 

5. Discussion 

Natural images can fundamentally affect the evolution and development of the biological vision 
systems. This leaded to study of the statistics of the natural images. One of the most striking 
findings is that the power spectrum of natural images conforms to universal power law. However, 
the questions like what is the origin of the universal power law or what is natural images anyway 
leave unanswered. Here the power spectra were first analysed under histogram and distortion 
transforms, it is found that the power spectra were kept. Then we tried to approach these questions 
from the micro and configure structures. The images were first divided into small patches. Then the 
micro structures were randomized while the relative positions of these patches were kept. It is found 
that even for small patches where images changed a little, the power spectrum of the resulted 
images did not conform to universal power law anymore. We then kept the micro structures and 
randomize the configure structures of these small patches. It is found that, when patches grew 
bigger (e.g. 6464) when more configure structures were kept, the power spectrum of the resulted 
images again conformed to the universal power law. Interestingly, here only 6.25% configure 
information of the original images was kept. Furthermore this asymmetry of local micro structures 
and global configure structure is interesting. 

Then we tried to approach this question from two simulation studies. In the first simulation, the 
objects in 3D space were represented as opaque spheres of different sizes. The sizes and positions 
of the spheres were assumed to be uniformly distributed, Then images of these spheres were 
rendered by Computer Graphics algorithm. It is found that the power spectra of the simulated 
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images conformed to the universal power law with deviations around -0.14~-0.67 (corresponding to 
different camera setups). Moreover the sizes of the circular disks in the simulated images 
conformed to 1/size3 for small disks while conformed to 1/size for large disks. This leaded to the 

second simulation in 2D which assumed the sizes of circular disks conformed to $1/sizeγ(γ=0~3). It 

was found that the power spectra of the simulated images conformed to universal power law with 
deviation 0.22, -0.17, -0.47, -0.59.  

Now one may suggest that the origin of the universal power law is due to the projection of 
equally distributed independent three dimensional objects to two dimensional images. The universal 
power law of natural images may just due to this kind of projection. Since statistically one has no 
reason to assume objects of certain sizes were more likely happen than other sizes of objects, the 
uniformly distributed sizes of objects were assumed. One interesting question is what is the 
distribution of the projection of the three dimensional objects? This requires a theoretical analysis. 
Several power law of the two dimensional objects all gave the power spectra of universal power law. 
One possibility reason for this is that this may indicate some distribution may not fit the distribution 
of the three dimensional projection even this power law still gave the universal power law. 

6. Conclusion 

From this research, one can realize that the power spectra of natural images are robust, e.g., to 
histogram equalization and distortion transform. However, even a small micro-structure change can 
lead the power spectra of the changed images did not conform to universal power law. On the other 
hand, big patches with configure randomization of natural images still conform to the universal 
power law.  

One may also conclude that the origin of the universal power may due to the projection of the 
three dimensional object to two dimensional images with the size of the three dimensional object 
equally distributed. Furthermore, that the different power law of two dimensional object size lead to 
the universal power law may indicate some power law may not be the actual distribution applied by 
the natural images. What kind of distribution in two dimensional space may be actually applied by 
the natural images waits for further research. 
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